Smoothed quantile regression for panel data∗
نویسندگان
چکیده
This paper studies fixed effects estimation of quantile regression (QR) models with panel data. Previous studies show that there are two important difficulties with the standard QR estimation. First, the estimator can be biased because of the well-known incidental parameters problem. Secondly, the non-smoothness of the objective function significantly complicates the asymptotic analysis of the estimator especially in the panel data case. We overcome the latter problem by smoothing the objective function. Under an asymptotic framework where both the numbers of individuals and time periods grow at the same rate, we show that the fixed effects estimator for the smoothed objective function has a limiting normal distribution with a bias in the mean, giving the analytic form of the asymptotic bias. We propose a simple one-step bias correction to the fixed effects estimator based on the analytic bias formula obtained from our asymptotic analysis. We illustrate the effect of the bias correction to the estimator through simulations.
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملThe Interaction Effects of Good Governance and Public Health Expenditure on Children’s Health Status: Quantile Regression for Upper-Middle Income Countries
Background and Aim: Public health expenditures and the quality of governance are among factors affecting the health status of a population. Therefore, the purpose of this study was to investigate the interaction effects of good governance and public health expenditures on the health status of children in upper-middle income countries. Materials and Methods: This descriptive-analytical applied ...
متن کاملGradient descent algorithms for quantile regression with smooth approximation
Gradient based optimization methods often converge quickly to a local optimum. However, the check loss function used by quantile regression model is not everywhere differentiable, which prevents the gradient based optimization methods from being applicable. As such, this paper introduces a smooth function to approximate the check loss function so that the gradient based optimization methods cou...
متن کاملPenalized Quantile Regression Estimation for a Model with Endogenous Individual Effects
Abstract. This paper proposes a penalized quantile regression estimator for panel data that explicitly considers individual heterogeneity associated with the covariates. We provide conditions under which the estimator is asymptotically Gaussian, and the harshness of the penalization can be determined by minimizing asymptotic mean squared error. We investigate finite sample and asymptotic perfor...
متن کاملQuantile Regression Estimation of Panel Duration Models with Censored Data∗
This paper studies the estimation of quantile regression panel duration models. We allow for the possibility of endogenous covariates and correlated individual effects in the quantile regression models. We propose a quantile regression approach for panel duration models under conditionally independent censoring. The procedure involves minimizing l1 convex objective functions and is motivated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010